Ising Model

Key: IM16
Hamiltonian: The Transverse Ising model $$H=\displaystyle\sum_{\{i,j\}\in E(G)}L_{ij}Z_iZ_j + \displaystyle\sum_{i\in V(G)}f_iX_i$$
Problem: Ground state energy
Complexity: StoqMA–complete
Ref: [BH16]

Conditionals:
  • $L_{ij}$ and $f_i$ are real
  • $f_i \geq 0$
  • $G$ is an interaction graph

Reductions:
  • From the 2–local Hamiltonian
  • To the Ising model
Key: IM17
Hamiltonian: The Classical Ising model $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)}L_{ij}S_iS_j$$
Problem: Ground state energy
Complexity: NP–complete
Ref: [Bar82]

Conditionals:
  • $L_{ij}\in\{-1,0,1\}$
  • $S_i \in \{-1,1\}$
  • $\Lambda$ representing a $2$–level grid

Reductions:
  • From the TIM
Key: IM18
Hamiltonian: The Classical Ising model $$H=\displaystyle\sum_{\{i,j\}\in E(G)} S_iS_j + \displaystyle\sum_{i\in V(G)} S_i$$
Problem: Ground state energy
Complexity: NP–hard
Ref: [Bar82]

Conditionals:
  • Antiferromagnetic interactions
  • $S_i \in \{-1,1\}$
  • $G$ representing a planar graph

Reductions:
  • From the TIM
Key: IM23
Hamiltonian: The IaF–Transverse Ising model $$H=\displaystyle\sum_{\{i,j\}\in E(G)}L_{ij}^{^{(\geq 0)}}Z_iZ_j + \displaystyle\sum_{i\in V(G)}f_iX_i$$
Problem: Ground state energy
Complexity: StoqMA–complete
Ref: [PM15]

Conditionals:
  • $L_{ij} \geq 0$
  • $G$ representing an interaction graph

Reductions:
  • From the general Transverse Ising Model

Gadgets:
  • Basic Gadget
Key: IM24
Hamiltonian: The IF–Transverse Ising model $$H=\displaystyle\sum_{\{i,j\}\in E(G)}L_{ij}^{^{(\leq 0)}}Z_iZ_j + \displaystyle\sum_{i\in V(G)}f_iX_i$$
Problem: Ground state energy
Complexity: BPP
Ref: [BH16]

Conditionals:
  • $L_{ij} \leq 0$
  • $G$ representing an interaction graph

Reductions:
  • From the general Transverse Ising Model
Key: IM501
Hamiltonian: The Ising model $$H_{MC}(G) = \frac{1}{2} \sum_{\{i,j\} \in E(G)} w_{ij} \left(\mathbb{I} - S_i \cdot S_j\right)$$
Problem: Max–Cut
Complexity: NP–complete
Ref: [GW95]

Conditionals:
  • The graph $G$ has egde weights $w_{ij}$
  • $w_{ij}\geq 0$ and $w_{ij} = O(1/\mathsf{poly}(n))$
  • $S_i \in \{\pm 1\}$
Key: PFP-IM-001
Hamiltonian: Ferromagnetic Ising model $$H = -\sum_{\{i,j\}\in E(G)} L_{ij}Z_iZ_j - B\sum_{i \in V(G)}Z_i$$
Problem: Partition function
Complexity: FPRAS
Ref: [JS93]

Conditionals:
  • $J_{ij} \in \mathbb{R}\backslash \{0\}$
  • $B \in \mathbb{R}$
  • $\beta \in \mathbb{R}^+$
  • $G$ represents a graph
Key: PFP-IM-101
Hamiltonian: Antiferromagnetic Ising Hamiltonian $$H = \sum_{\{i,j\}\in E(G)} J_{ij} Z_iZ_j + \sum_{i \in V(G)} h_i Z_i$$
Problem: Partition function
Complexity: FPTAS
Ref: [SST14]

Conditionals:
  • $J_{ij} \in \mathbb{R}^+$
  • $G$ has maximum degree $\Delta$
  • Parameters in the interior of the uniqueness region of the infinite $(\Delta – 1)$–regular tree
  • $\beta \in \mathbb{R}^+$
Key: PFP-IM-102
Hamiltonian: Antiferromagnetic Ising Hamiltonian $$H = \sum_{\{i,j\}\in E(G)} J_{ij} Z_iZ_j + \sum_{i \in V(G)} h_i Z_i$$
Problem: Partition function
Complexity: No FRPAS
Ref: [SS14], [GSV16]

Conditionals:
  • $J_{ij} \in \mathbb{R}^+$
  • $G$ has maximum degree $\Delta$
  • Parameters in the interior of the non–uniqueness region of the infinite $(\Delta – 1)$–regular tree
  • $\beta \in \mathbb{R}^+$
  • No FPRAS unless RP=NP.