Fermi–Hubbard Model
Key: FHM01
Hamiltonian: The Fermi–Hubbard Model $$H = \displaystyle\sum_{\{i,j\}\in E(\Lambda)}\displaystyle\sum_{\sigma}t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U\displaystyle\sum_{i\in V(\Lambda)}n_{i\uparrow}n_{i\downarrow} + \displaystyle\sum_{i\in V(\Lambda)} \boldsymbol{B}_i \cdot \boldsymbol{S}_i $$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [SV09]
Conditionals:
- $U\gg t$
- $U/t$ grows polynomially in system size
- Half filling
- Nearest neighbour interactions
- $\Lambda$ is a 2D square lattice
- External fields of the form: $-\displaystyle\sum_{i\in\Lambda} \boldsymbol{B}_i \cdot \boldsymbol{S}_i$
Reductions:
- From HaF–Heisenberg model on a 2D square lattice
Key: FHM02
Hamiltonian: The Fermi–Hubbard Model $$H = \displaystyle\sum_{\{i,j\}\in E(G)}\displaystyle\sum_{\sigma}t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U\displaystyle\sum_{i\in V(G)}n_{i\uparrow}n_{i\downarrow}$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [OIWF21]
Conditionals:
- $|t| \leq \sqrt{\mathsf{poly}(n) U}$
- $U/t$ grows polynomially in system size
- Half filling
- $\Lambda$ represents an interaction graph
Reductions:
- From HaF–Heisenberg model on a weighted interaction graph (IaF–Heisenberg Hamiltonian)
- To the Electronic Structure Hamiltonian