Fermi–Hubbard Model

Key: FHM01
Hamiltonian: The Fermi–Hubbard Model $$H = \displaystyle\sum_{\{i,j\}\in E(\Lambda)}\displaystyle\sum_{\sigma}t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U\displaystyle\sum_{i\in V(\Lambda)}n_{i\uparrow}n_{i\downarrow} + \displaystyle\sum_{i\in V(\Lambda)} \boldsymbol{B}_i \cdot \boldsymbol{S}_i $$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [SV09]

Conditionals:
  • $U\gg t$
  • $U/t$ grows polynomially in system size
  • Half filling
  • Nearest neighbour interactions
  • $\Lambda$ is a 2D square lattice
  • External fields of the form: $-\displaystyle\sum_{i\in\Lambda} \boldsymbol{B}_i \cdot \boldsymbol{S}_i$

Reductions:
  • From HaF–Heisenberg model on a 2D square lattice
Key: FHM02
Hamiltonian: The Fermi–Hubbard Model $$H = \displaystyle\sum_{\{i,j\}\in E(G)}\displaystyle\sum_{\sigma}t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U\displaystyle\sum_{i\in V(G)}n_{i\uparrow}n_{i\downarrow}$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [OIWF21]

Conditionals:
  • $|t| \leq \sqrt{\mathsf{poly}(n) U}$
  • $U/t$ grows polynomially in system size
  • Half filling
  • $\Lambda$ represents an interaction graph

Reductions:
  • From HaF–Heisenberg model on a weighted interaction graph (IaF–Heisenberg Hamiltonian)
  • To the Electronic Structure Hamiltonian