General Hamiltonians
Key: 2LPH18
Hamiltonian: The Electronic Structure Hamiltonian $$ H = \displaystyle\sum_{i,j \in [n]}\displaystyle\sum_{\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} \displaystyle\sum_{i,j,k,l \in [n]}\displaystyle\sum_{\sigma,\tau} u_{ijkl}c_{i\sigma}^\dagger c_{j\tau}^\dagger c_{k\sigma} c_{l\sigma} $$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [OIWF21]
Conditionals:
- Fixed–basis set
- Fixed particle number, $n$
Reductions:
- From the Fermi–Hubbard Hamiltonian
Key: 2LPH18
Hamiltonian: The Electronic Structure Hamiltonian $$ H = \displaystyle\sum_{i,j \in [n]}\displaystyle\sum_{\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} \displaystyle\sum_{i,j,k,l \in [n]}\displaystyle\sum_{\sigma,\tau} u_{ijkl}c_{i\sigma}^\dagger c_{j\tau}^\dagger c_{k\sigma} c_{l\sigma} $$
Problem: Lowest–energy Slater Determinant
Complexity: NP–complete
Ref: [OIWF21]
Conditionals:
- Fixed–basis set
- Fixed particle number, $n$
- Inverse polynomial precision
Reductions:
- To a diagonal Hamiltonian