Heisenberg Model

Key: HbM01
Hamiltonian: The Heisenberg Hamiltonian $$H=J\displaystyle\sum_{\{i,j\}\in E(G)} \big(X_iX_j + Y_iY_j + Z_iZ_j\big) -\displaystyle\sum_{i\in V(G)} \boldsymbol{B}_i \cdot \boldsymbol{\sigma}_i$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [SV09]

Conditionals:
  • $J\gt0$ or $J\lt0$
  • $\Lambda$ representing a spatially sparse lattice
  • External fields of the form: $-\displaystyle\sum_{i} \boldsymbol{B}_i \cdot \boldsymbol{\sigma}_i$
  • $G$ is an interaction graph

Reductions:
  • From the general $2$–local Pauli Hamiltonian
  • To the Fermi–Hubbard Hamiltonian with external fields

Gadgets:
  • Pauli Coupling Gadget, Pauli–to–Ising Gadget, Ising–to–$XX$ Gadget
Key: HbM01
Hamiltonian: The Heisenberg Hamiltonian $$H=J\displaystyle\sum_{\{i,j\}\in E(\Lambda)} \big(X_iX_j + Y_iY_j + Z_iZ_j\big) -\displaystyle\sum_{i\in V(\Lambda)} \boldsymbol{B}_i \cdot \boldsymbol{\sigma}_i$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [SV09]

Conditionals:
  • $J\gt0$ or $J\lt0$
  • $\Lambda$ representing a 2D square lattice
  • External fields of the form: $-\displaystyle\sum_{i\in\Lambda} \boldsymbol{B}_i \cdot \boldsymbol{\sigma}_i$

Reductions:
  • From the Heisenebrg Hamiltonian with external fields on a spatially sparse lattice
  • To the Fermi–Hubbard Hamiltonian with external fields

Gadgets:
  • Erasure
Key: HbM108
Hamiltonian: The Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(G)} J_{ij}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [CM16]

Conditionals:
  • $G$ representing an interaction graph

Reductions:
  • From the weighted (xyz/.) Hamiltonian
  • To the IaF–Heisenberg Hamiltonian or the Heisenberg Hamiltonian on a 2D square lattice
Key: HbM104
Hamiltonian: The Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)} J_{ij}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [CMP18]

Conditionals:
  • $\Lambda$ representing a 2D square lattice

Reductions:
  • From the weighted (xyz/.) Hamiltonian on a 2D square lattice
  • To the Heisenberg Hamiltonian on a 2D triangular lattice
Key: HbM105
Hamiltonian: The Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)} J_{ij}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [CMP18]

Conditionals:
  • $\Lambda$ representing a 2D triangular lattice

Reductions:
  • From the weighted (xyz/.) Hamiltonian on a 2D square lattice
  • To the (xy/.) Hamiltonian on a 2D triangular lattice
Key: HbM110
Hamiltonian: The IaF–Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(G)} J_{ij}^{^{(\geq 0)}}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [PM15]

Conditionals:
  • $J_{ij}\geq 0$
  • $G$ representing an interaction graph

Reductions:
  • From the Heisenberg Hamiltonian
  • To the IaF–Heisenberg Hamiltonian on a 2D triangular lattice
Key: HbM113
Hamiltonian: The IaF–Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)} J_{ij}^{^{(\geq 0)}}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: in StoqMA
Ref: [PM15]

Conditionals:
  • $J_{ij}\geq 0$
  • $\Lambda$ representing a 2D bipartite lattice

Reductions:
  • From the IaF–Heisenberg Hamiltonian on a general graph
  • To the ferromagnetic Heisenberg Hamiltonian on a bipartite lattice
Key: HbM114
Hamiltonian: The IaF–Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)} J_{ij}^{^{(\geq 0)}}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: QMA–complete
Ref: [PM15]

Conditionals:
  • $J_{ij}\geq 0$
  • $\Lambda$ representing a 2D triangular lattice

Reductions:
  • From the IaF weighted (xyz/.) Hamiltonian on a 2D triangular lattice
  • To the IaF–(xy/.) Hamiltonian on a 2D triangular lattice

Gadgets:
  • Positive and Negative subdivision
Key: HbM115
Hamiltonian: The Ferromagnetic Heisenberg Hamiltonian $$H=\displaystyle\sum_{\{i,j\}\in E(\Lambda)} J_{ij}^{^{(\leq 0)}}\big(X_iX_j + Y_iY_j + Z_iZ_j\big)$$
Problem: Ground state energy
Complexity: P
Ref: [Wai23]

Conditionals:
  • $J_{ij}\leq 0$
  • $\Lambda$ representing a 2D bipartite lattice

Reductions:
  • From the IaF weighted (xyz/.) Hamiltonian
Key: HbM501
Hamiltonian: The Heisenberg Hamiltonian $$H_{QMC_S}(G) = \frac{1}{2} \sum_{\{i,j\} \in E(G)} w_{ij} \left(\mathbb{I} - \frac{1}{S^2}\;\boldsymbol{S}_i \cdot \boldsymbol{S}_j \right)$$
Problem: Quantum Max–Cut
Complexity: QMA–complete
Ref: [BP24]

Conditionals:
  • The graph $G$ has egde weights $w_{ij}$
  • $w_{ij}\geq 0$ and $w_{ij} = O(\mathsf{poly}(n))$
  • $\boldsymbol{S} = (S^1,S^2,S^3)$ denote the spin–$S$ operators
  • $S\rightarrow\infty$

Reductions:
  • To the antiferromagnetic Heisenberg model
Key: HbM901
Hamiltonian: The Heisenberg Hamiltonian $$H_{QMC}(G) = \frac{1}{2} \sum_{\{i,j\} \in E(G)} w_{ij} \left(\mathbb{I} - \frac{1}{S^2}\;\boldsymbol{S}_i \cdot \boldsymbol{S}_j \right)$$
Problem: Quantum Max–Cut product states
Complexity: NP–complete
Ref: [KPT+24]

Conditionals:
  • The graph $G$ has egde weights $w_{ij}$
  • $w_{ij}\geq 0$ and $w_{ij} = O(\mathsf{poly}(n))$
  • $\boldsymbol{S} = (S^1,S^2,S^3)$ denote the spin–$\frac{1}{2}$ operators

Reductions:
  • To the antiferromagnetic Heisenberg model and to Max–Cut$_3$